เครื่องวัดทางไฟฟ้า

เครื่องมือวัดทางไฟฟ้า แอมมิเตอร์ โวลต์มิเตอร์ และโอห์มมิเตอร์ เป็นเครื่องวัดทางไฟฟ้า เพื่อใช้วัดปริมาณต่างๆ ทางไฟฟ้า เครื่องวัดทางไฟฟ้าต่างๆ นี้ สามารถสร้างขึ้น โดยดัดแปลงมาจาก แกลแวนอมิเตอร์ (Galvanometer) ชนิด ขดลวดเคลื่อนที่ ซึ่งประกอบด้วยขดลวดวางระหว่างขั้วแม่เหล็ก แกลแวนอมิเตอร์ (Galvanometer) คือ เครื่องมือวัดพื้นฐานทางไฟฟ้าที่สามารถวัดได้ทั้งกระแส ไฟฟ้าและความต่างศักย์ไฟฟ้า แต่จะวัดได้ปริมาณน้อยๆ ดังนั้นจึงนิยมนำไปดัดแปลงใช้วัดกระแสไฟฟ้า ความ ต่างศักย์ไฟฟ้า และความต้านทาน หลักการทำงานของแกลแวนอมิเตอร์ เมื่อมีกระแสไฟฟ้าผ่านเข้าไปในขดลวด จะทำให้ขดลวดหมุนได้ เนื่องจากเกิดแรงกระทำระหว่างสนาม แม่เหล็กไฟฟ้ารอบๆ ขดลวดกับสนามแม่เหล็กจากขั้วแม่เหล็ก และถ้ามีเข็มติดกับขดลวดเข็มก็จะเบนไปด้วย การเบนของเข็มจะมากหรือน้อยขึ้นอยู่กับปริมาณกระแสไฟฟ้าที่ผ่านเข้าไปในขดลวด กระแสไฟฟ้าที่ทำให้เข็มของ แกลแวนอมิเตอร์เบนได้สูงสุด จะมีค่าจำกัดค่าหนึ่ง เรียกว่า "กระแสสูงสุดของแกลแวนอมิเตอร์" ถ้ากระแสไฟฟ้า ผ่านเข้าไปในแกลแวนอมิเตอร์มากกว่าค่าจำกัดดังกล่าวนี้ จะทำให้แกลแวนอมิเตอร์เสียหายได้ ดังนั้น การที่จะนำแกลแวนนอมิเตอร์ไปใช้วัดค่ากระแสไฟฟ้าและความต่างศักย์ไฟฟ้าในวงจรไฟฟ้า จึงต้อง ทำการดัดแปลงเสียก่อน
สัญลักษณ์ของแกลแวนอมิเตอร์คือ

วันพฤหัสบดีที่ 25 กันยายน พ.ศ. 2551

บทเรียนทางไกลผ่านเครือข่ายอินเทอร์เน็ต เรื่อง "การควบคุมมอเตอร์"
สารบัญบทเรียนโมดูล
โมดูลที่ 1 บทนำการควบคุมมอเตอร์ (Introduction to Motor Control)
ความหมายของการควบคุมมอเตอร์
ประเภทของการควบคุมมอเตอร์
ลักษณะการควบคุมมอเตอร์แบบต่าง ๆ
โมดูลที่ 2 อุปกรณ์ในการควบคุมมอเตอร์และสัญลักษณ์ (Control Equipment and Symbols)
อุปกรณ์ในการควบคุมมอเตอร์
สัญลักษณ์ของอุปกรณ์ควบคุมมอเตอร์
การทำงานของอุปกรณ์ควบคุมมอเตอร์
การทำงานของอุปกรณ์ควบคุมมอเตอร์
โมดูลที่ 3 (Module1) : การเขียนแบบในงานควบคุมมอเตอร์ (Drawing in Motor Control)
ประเภทของการเขียนแบบในงานควบคุมมอเตอร์
จุดประสงค์เบื้องต้นของการเขียนแบบในงานควบคุมมอเตอร์
วิธีการเขียนแบบในการควบคุมมอเตอร์แบบต่าง ๆโมดูลที่ 4 (Module 4) : รีเลย์และคอนแทกเตอร์ (Relays and Contactors)
ความหมายของรีเลย์ และคอนแทกเตอร์
หลักการนำคอนแทกเตอร์ไปใช้งาน
บอกชื่อและหน้าที่ของส่วนประอบต่าง ๆ ของคอนแทกเตอร์
การทำงานของหน้าสัมผัสหลัก และหน้าสัมผัสช่วย
ชนิดและขนาดของคอนแทกเตอร์ไฟสลับ
โมดูลที่ 5 (Module 5) :อุปกรณ์ป้องกันวงจรมอเตอร์ (Motors Protective Devices)
ประเภทของสภาวะการเกิดความผิดพร่องในวงจรไฟฟ้า
การทำงานของฟิวส์และเซอร์กิตเบรกเกอร์
การระบุพิกัดกระแสเกินที่อุปกรณ์ป้องกันวงจร
การระบุพิกัดโหลดเกินที่อุปกรณ์ป้องกันวงจร
หน้าที่การป้องกันวงจรย่อยของมอเตอร์
โมดูลที่ 6 (Module 6) :อุปกรณ์ป้องกันโหลดเกิน (Overload Devices)
ประเภทของความร้อนที่เกิดขึ้นกับมอเตอร์
ประเภทของโอเวอร์โหลด
การทำงานของโอเวอร์โหลด
เปอร์เซ็นต์การปรับตั้งโอเวอร์โหลด
การคำนวณค่ากระแสของการปรับตั้งโอเวอร์โหลด
โมดูลที่ 7 (Module 7) แหล่งจ่ายกำลังไฟฟ้า (Electric Power Supply)
ประเภทของแหล่งกำเนิดไฟฟ้า
ลักษณะของไฟฟ้ากระแสตรง
ลักษณะของไฟฟ้ากระแสสลับเฟสเดียว
ลักษณะของไฟฟ้ากระแสสลับสามเฟส
ขนาดแรงดันของไฟฟ้ากระแสสลับเฟสเดียวและสามเฟส
โมดูลที่ 8 (Module 8) มอเตอร์ไฟฟ้าสามเฟส (Three Phase Motor)
ประเภทของมอเตอร์สามเฟส
การทำงานของมอเตอร์สามเฟส
ลักษณะการต่อแบบวาร์ยและเดลตา
โมดูลที่ 9 (Module 9) : ประเภทของวงจรในการสตาร์ทมอเตอร์ ( Type of Motor Starting)
ประเภทของการสตาร์ทมอเตอร์
ลักษณะของการสตาร์ทมอเตอร์โดยตรง
ลักษณะของการสตาร์ทมอเตอร์แบบลดแรงดัน
โมดูลที่ 10 (Module 10) : การสตาร์ทมอเตอร์โดยตรง (Direct online Starting)
ลักษณะของการสตาร์ทมอเตอร์โดยตรง
ส่วนประกอบของวงจรสตาร์ทมอเตอร์โดยตรง
การทำงานของวงจรสตาร์ทมอเตอร์โดยตรง
โมดูลที่ 11 (Module 11) : การควบคุมการกลับทางหมุนมอเตอร์ 3 เฟส (Reversing of 3 Phase Motors)
ประเภทของการกลับทางหมุนมอเตอร์สามเฟส
ข้อแตกต่างของการกลับทางหมุนมอเตอร์แบบต่าง ๆ
ลักษณะของการกลับทางหมุนมอเตอร์แบบต่าง ๆ
การทำงานของวงจรการกลับทางหมุนมอเตอร์แบบต่าง ๆโมดูลที่ 12 (Module 12) : วงจรสตาร์ทมอเตอร์แบบสตาร์-เดลตาอัตโมมัติ(Automatic Star-Delta Starter)
เหตุผลของการสตาร์ทมอเตอร์แบบสตาร์-เดลตา
อุปกรณ์ในการสตาร์ทมอเตอร์แบบสตาร์-เดลตา
การทำงานของวงจรสตาร์ทมอเตอร์แบบสตาร์-เดลตา

โครงสร้างของสสาร


สสาร ต่างๆที่อยู่บนโลกนี้และอยู่ในอากาศรอบๆโลก สามารถแบ่งออกได้เป็น ของแข็ง ของเหลว และก๊าซ สสารเหล่านี้จะสามารถแบ่งเป็นธาตุต่างๆตามธรรมชาติ ซึ่งธาตุนั้นก็หมายถึง สารประกอบที่มีอะตอมหลายๆตัวรวมกันและในธาตุแต่ละชนิดจะมีอะตอมที่แตกต่างกันออกไป

อะตอม


อะตอม หมายถึง หน่วยที่เล็กที่สุดของธาตุเมื่อทำการแบ่งแยกแล้วจะทำให้คุณสมบัติของธาตุนั้นเปลี่ยนไป ในปัจจุบันนี้เรายังไม่สามารถที่จะดูอะตอมของธาตุต่างๆ ได้อย่างชัดเจนนัก โดยเราสามาถใช้กล้องไมโครสโคป ส่องดูอะตอมของธาตุแต่อย่างไรก็ตามนักฟิสิกส์และนักวิจัยต่างๆ ก็คงพยายามที่จะบันทึกภาพของอะตอมที่ขนาดเส้นผ่าศูนย์กลางยาวประมาณ 12 ล้านล้าน ส่วนของนิ้วและได้ตั้งสมมติฐานว่าอะตอมนั้นมีลักษณะเป็นละอองฝอยคล้ายลูกบอลสีขาว
ในปี ค.ศ. 1913 นักฟิสิกส์ชื่อ Danish Neils Bohr ได้เสนอทฤษฎีเกี่ยวกับอะตอมว่า อะตอมประกอบด้วยอนุภาคสำคัญ 3 ส่วนคือ โปรตอน มีประจุไฟฟ้าเป็นบวก นิวตรอนมีคุณสมบัติเป็นกลางทางไฟฟ้า และอิเล็กตรอนมีประจุไฟฟ้าเป็นลบ โดยมีส่วนที่เป็นใจกลางของอะตอมเรียกว่า นิวเคลียส ซึ่งประกอบด้วย โปรตรอนและนิวตรอน ส่วนอิเล็กตรอนนั้นจะโคจรอยู่รอบๆ นิวเคลียส

โมเลกุล


โมเลกุล คือ หน่วยที่เล็กที่สุดของธาตุตามธรรมชาติ โดยธาตุต่างๆจะประกอบด้วยอะตอมมากมายหลายล้านอะตอม เมื่อเรานำสารต่างชนิดกันเราเรียกว่าสารประกอบ หน่วยที่เล็กของสารประกอบเรียกว่า โมเลกุล ซึ่งอะตอมที่เป็นประกอบธาตุและโมเลกุลที่ประกอบกันเป็นสารประกอบ เช่น น้ำ ประกอบด้วย ไฮโดรเจน 2 โมเลกุล และ ออกซิเจน 1 โมเลกุล

แหล่งกำเนิดไฟฟ้า


แหล่งกำเนิดไฟฟ้าหรือแหล่งจ่ายไฟฟ้า คือ แหล่งที่จ่ายพลังงานศักย์ไฟฟ้า หรืออาจเรียกว่าแรงเคลื่อนไฟฟ้า ออกมาใช้งานกับอุปกรณ์ไฟฟ้าทั่วๆไปสามารถแบ่งออกเป็น 4ชนิดใหญ่ๆคือ
1. แบตเตอรี่
2. เซลล์แสงอาทิตย์
3. เจอเนอเรเตอร์
4. แหล่งจ่ายไฟฟ้าแบบอิเล็กทรอนิกส์

แบตเตอรี่ เป็นแหล่งกำเนิดไฟฟ้าที่อาศัยหลักการเปลี่ยนแปลงพลังงานเคมีให้เป็นพลังงานไฟฟ้า แบตเตอรี่ประกอบด้วยเซลล์ไฟฟ้าตั้งแต่ 1 เซลล์ หรือมากกว่า โดยเซลล์นี้จะเชื่อมต่อเข้าด้วยกันทางไฟฟ้าซึ่งจะประกอบด้วยอุปกรณ์พื้นฐาน 4 ส่วน
1. ขั้วบวก (Positive Electrode)
2. ขั้วลบ (Negative Electrode)
3. อิเล็กโทรไลต์ (Electrolyte)
4. ตัวขั้นเซลล์ (Seperator)

ขั้วบวกเป็นส่วนที่สูญเสียอิเล็กตรอนเนื่องจากการทำปฏิกิริยาทางเคมี ส่วนลบจะเป็นตัวรับอิเล็กตรอนภายหลังที่เกิดการทำปฏิกิริยาทางเคมีขึ้น สำหรับอิเล็กโตรไลต์จะเป็นตัวกลางให้อิเล็กตรอนไหลผ่านระหว่างขั้วบวกและขั้วลบ ส่วนตัวขั้นเซลล์จะใช้แยกส่วนของขั้วบวกและขั้วลบออกจากกันทางไฟฟ้า
สำหรับแรงดันไฟฟ้าที่ได้จากเซลแบตเตอรี่จะถูกกำหนดโดยวัสดุที่ใช้สร้าง ซึ่งแรงปฏิกิริยาทางเคมีที่เกิดขึ้นแต่ละขั้วอิเล็กโทรดจะให้ค่าศักย์ทางไฟฟ้าค่าหนึ่ง เช่น เซลล์แบตเตอรี่แบบตะกั่ว - กรด ที่ขั้วบวกจะให้ศักย์ไฟฟ้าเท่ากับ - 1.685 โวลต์ ส่วที่ขั้วลบจะให้ศักย์ไฟฟ้าเท่ากับ + 0.365 โวลต์ จากศักย์ไฟฟ้าที่ได้จากขั้วอิเล็กโทรดทั้งสองทำให้ได้ผลรวมของแรงดันไฟฟ้าเท่ากับ 2.05 โวลต์ ซึ่งค่าแรงดันทางไฟฟ้านี้จะเป็นศักย์ไฟฟ้ามาตรฐานของเซลล์แบตเตอรี่แบบตะกั่ว - กรด
นอกจากศักย์ไฟฟ้าที่ได้จากแต่ละขั้วอิเล็กโทรดแล้ว ความเข้มข้นของกรดภายในแบตเตอรี่ก็จะมีผลต่อค่าแรงดันไฟฟ้าที่จะเพิ่มขึ้นอีกเล็กน้อย ดังนั้น แรงดันไฟฟ้าโดยทั่วไปที่ได้จากแบตเตอรี่แบบตะกั่ว - กรด จะประมาณ 2.15 โวลต์ สำหรับเซลล์นิเกิล - แคดเมียม จะให้แรงดันไฟฟ้าประมาณ 1.2 โวลต์ ส่วนเซลล์ลิเทียม จะให้แรงดันไฟฟ้าออกมาสูงถึง 4 โวลต์
โดยทั่วไปแล้วแบตเตอรี่จะประกอบด้วยเซลล์หลายเซลล์ที่มีการเชื่อมต่อกันทางไฟฟ้าอยู่ภายใน ซึ่งวิธีการต่อของแต่ละเซลล์และชนิดของวัสดุที่นำมาใช้เป็นเซลล์ จะเป็นปัจจัยที่กำหนดขนาดของแรงดันไฟฟ้าและความจุไฟของแบตเตอรี่ โดยการต่อถ้าให้ขั้วบวกของเซลล์หนึ่งต่อกับขั้วลบของเซลล์ถัดไป และต่อกันเช่นนี้ไปเรื่อยๆ จะทำให้แรงดันไฟฟ้าที่ได้เท่ากับผลรวมของแรงดันไฟฟ้าของแต่ละเซลล์รวมกัน เรียกการต่อแบบนี้ว่า การต่อแบบอนุกรมหรือการต่อแบบอันดับ ส่วนวิธีการเพิ่มความจุไฟฟ้าให้กับแบตเตอรี่นั้น จะต้องต่อให้ขั้วบวกของทุกเซลล์เข้าด้วยกันและขั้วลบของทุกเซลล์เข้าด้วยกัน เรียกการต่อแบบนี้ว่า การต่อแบบขนาน

สำหรับการแบ่งกลุ่มของแบตเตอรี่ สามารถแบ่งได้ 2 กลุ่มหลักดังนี้
1. แบตเตอรี่แบบปฐมภูมิ (Primary Battery)
2. แบตเตอรี่แบบทุติยภูมิ (Secondary Battery)
แบตเตอรี่แบบปฐมภูมิ หมายถึง แบตเตอรี่ที่ใช้งานได้เพียงครั้งเดียวและเมื่อประจุไฟหมดแล้วจะต้องทิ้งไป ทั้งนี้เนื่องจากไม่สามารถทำให้เกิดปฏิกิริยาทางเคมีแบบย้อนกลับใหม่ได้ ส่วนแบตเตอรี่ทุติยภูมิสามารถจะทำปฏิกิริยาทางเคมีแบบย้อนกลับได้ ดังนั้น จึงสามารถทำการเก็บประจุไฟใหม่และนำกลับมาใช้งานได้อีก

เซลล์แสงอาทิตย์


เป็นแหล่งกำเนิดพลังงานไฟฟ้าที่อาศัยหลักการเปลี่ยนแปลงพลังงานแสงให้เป็นพลังงานไฟฟ้า โครงสร้างของเซลล์แสงอาทิตย์ประกอบด้วยสารกึ่งตัวนำ 2 ชนิด เชื่อมกันเพื่อให้เกิดรอยต่อ เมื่อผิวของสารกึ่งตัวนำด้านหนึ่งถูกแสงจะทำให้อิเล็กตรอนได้รับพลังงานเพียงพอจะทำให้อะตอมเคลื่อนที่ข้ามรอยต่อทำให้เกิดความต่างศักย์ไฟฟ้า

เจนเนอเรเตอร์


เป็นอุปกรณ์ที่ทำหน้าที่เปลี่ยนพลังงานกลให้เป็นพลังงานไฟฟ้า โดยอาศัยหลักการเหนี่ยวนำแม่เหล็กไฟฟ้า หลักการทำงานโดยการทำให้ตัวนำหมุนตัดผ่านสนามแม่เหล็กซึ่งการจัดการทำงานลักษณะเช่นนี้ทำให้เกิดแรงเคลื่อนไฟฟ้าเหนี่ยวนำผ่านตัวนำที่หมุนอยู่ และสามารถต่อแรงดันไฟฟ้านี้ออกไปใช้งานภายนอกได้

แหล่งจ่ายไฟฟ้าแบบอิเล็กทรอนิกส์


เป็นแหล่งจ่ายที่ไม่ได้เกิดจากการเปลี่ยนแปลงพลังงานในรูปแบบใดให้เป็นพลังงานไฟฟ้า แต่เป็นการเปลี่ยนแปลงแรงดันไฟฟ้ากระแสสลับจากระบบไฟฟ้าที่ใช้กันตามบ้านเรือนทั่วไปให้เป็นแรงดันไฟฟ้ากระแสตรงที่มีค่าความคงที่ การต่อออกไปใช้งานเพียงต่อออกจากขั้วไฟที่เตรียมไว้

หน่วยวัดทางไฟฟ้า


กระแสไฟฟ้า Electrical Current เกิดจากการเคลื่อนที่ของอิเล็กตรอนจากจุดหนึ่งไปยังอีกจุดหนึ่งภายในตัวนำไฟฟ้าการเคลื่อนที่ของอิเล็กตรอนเกิดจากการนำวัตถุที่มีประจุไฟฟ้าต่างกันนำมาวางไว้ใกล้กันโดยจะใช้ตัวนำทางไฟฟ้าคือ ทองแดง การเคลื่อนที่ของอิเล็กตรอนจะเคลื่อนที่จากวัตถุที่มีประจุไฟฟ้าบวกไปยังวัตถุ ที่มีประจุไฟฟ้าลบมีหน่วยเป็น Ampere อักษรย่อคือ " A "

กระแสไฟฟ้าสามารถแบ่งออกได้เป็น 2 ชนิด

1. ไฟฟ้ากระแสตรง Direct Current เป็นกระแสไฟฟ้าที่เกิดจากการเคลื่อนที่ของอิเล็กตรอนจากแหล่งจ่ายไฟฟ้าไปยังอุปกรณ์ไฟฟ้าใดๆได้เพียงทิศทางเดียว สำหรับแหล่งจ่ายไฟฟ้านั้น มาจากเซลล์ปฐมภูมิคือถ่านไฟฉาย หรือเซลล์ทุติยภูมิคือ แบตเตอรี่ หรือเครื่องกำเนิดไฟฟ้ากระแสตรง

2. ไฟฟ้ากระแสสลับ Alternating Current เป็นกระแสไฟฟ้าที่เกิดจากการเคลื่อนที่ของอิเล็กตรอนจากแหล่งจ่ายไฟไปยังอุปกรณ์ไฟฟ้าใดๆโดยมีการเคลื่อนที่กลับไปกลับมาตลอดเวลา สำหรับแหล่งจ่ายไฟนั้นมาจากเครื่องกำเนิดไฟฟ้ากระแสสลับชนิดหนึ่งเฟสหรือเครื่องกำเนิดไฟฟ้ากระแสสลับชนิดสามเฟส

แรงดันไฟฟ้า Voltage

เป็นแรงที่ทำให้อิเล็กตรอนเกิดการเคลื่อนที่ หรือแรงที่ทำให้เกิดการไหลของไฟฟ้าโดยแรงดันไฟฟ้าที่มีระดับต่างกันจะมีปริมาณไฟฟ้าสูงเนื่องจากปริมาณประจุไฟฟ้าทั้งสองด้านมีความแตกต่างกัน ทำให้เกิดการเคลื่อนที่ของอิเล็กตรอน โดยทั่วๆไปแล้วแรงดันไฟฟ้าที่ตกคร่อมอุปกรณ์ไฟฟ้าแต่ละตัวภายในวงจรไฟฟ้าหรือแรงดันไฟฟ้าของแหล่งจ่ายไฟฟ้า จะใช้หน่วยของแรงดันไฟฟ้าจะใช้ตัวอักษร V ตัวใหญ่ธรรมดา จะแทนคำว่า Volt ซึ่งเป็นหน่วยวัดของแรงดันไฟฟ้า



ความต้านทานไฟฟ้า


ความต้านทานไฟฟ้า Resistance
เป็นการต่อต้านการไหลของกระแสไฟฟ้าของวัตถุซึ่งจะมีค่ามากหรือค่าน้อยจะขึ้นอยู่กับชนิดของวัตถุนั้นๆ ความต้านทานจะมีหน่วยวัดเป็น โอห์ม และจะใช้สัญลักษณ์เป็น ( Ohms)

ตัวนำไฟฟ้า
ตัวนำไฟฟ้า Conductors วัตถุที่กระแสไฟฟ้าสามารถไหลผ่านได้โดยง่ายหรือวัตถุที่มีความต้านทานต่ำ เช่นทองแดง อลูมิเนียม ทอง และเงิน ซึ่งเป็นตัวนำไฟฟ้าที่ดีที่สุด ค่าความนำไฟฟ้าจะมีสัญลักษณ์เป็น G และมีหน่วยเป็น ซีเมนส์ (S) โดยมีสูตรการคำนวนดังนี้

G = 1/R


ตัวอย่าง
วัตถุชนิดหนึ่งมีค่าความต้านทานไฟฟ้า 25 โอห์ม จงคำนวนหาค่าความนำไฟฟ้าของวัตถุชนิดนี้มีค่าเป็นเท่าไร

จากสูตร
G = 1/R

แทนค่า
G = 1/25
คำตอบ
G = 40 mS

ฉนวนไฟฟ้า


ฉนวนไฟฟ้า Insulators วัตถุที่ซึ่งไม่ยอมให้กระแสไฟฟ้าไหลผ่านไปได้ หรือวัตถุที่มีความต้านทานไฟฟ้าสูง ซึ่งสามารถต้านทานการไหลของกระแสได้ เช่น ไมก้า แก้ว และพลาสติก

การเปลี่ยนหน่วยทางไฟฟ้า


หน่วยวัดพื้นฐานทางไฟฟ้า ได้แก่ แอมแปร์ A โวลต์ V และโอห์ม W ซึ่งจะใช้ในการแสดงปริมาณกระแสไฟฟ้า ขนาดของแรงดัน และค่าความต้านทาน เพื่อให้เกิดความสะดวกจึงมีการใช้ตัวคูณมาใช้ในการแสดงค่า

เปลี่ยนหน่วยทางไฟฟ้า

หน่วยวัดพื้นฐานทางไฟฟ้า ได้แก่ แอมแปร์ A โวลต์ V และโอห์ม W ซึ่งจะใช้ในการแสดงปริมาณกระแสไฟฟ้า ขนาดของแรงดัน และค่าความต้านทาน เพื่อให้เกิดความสะดวกจึงมีการใช้ตัวคูณมาใช้ในการแสดงค่า

หน่วยทางไฟฟ้า
สัญลักษณ์
หน่วยเทียบ
MegaM 1,000,000
KiloK 1,000
Millim0.001
Microu
0.000001






กฎของโอห์ม

กระแสไฟฟ้าที่ไหลในวงจรไฟฟ้าได้นั้น เกิดจากแรงดันไฟฟ้าที่จ่ายให้กับวงจรและปริมาณกระแสไฟฟ้าภายในวงจรจะถูกจำกัดโดยความต้านทานไฟฟ้าภายในวงจรไฟฟ้านั้นๆ ดังนั้นปริมาณกระแสไฟฟ้าภายในวงจรจะขึ้นอยู่กับแรงดันไฟฟ้าและค่าความต้านทานของวงจร ซึ่งวงจรนี้ถูกค้นพบด้วย George Simon Ohm เป็นนักฟิสิกส์ชาวเยอรมันและนำออกมาเผยแพร่ในปี ค.ศ.1826 ซึ่งวงจรนี้เรียกว่า กฎของโอห์ม กล่าวว่ากระแสไฟฟ้าที่ไหลในวงจรจะแปรผันตรงกับแรงดันไฟฟ้าและแปรผกผันกับค่าความต้านทานไฟฟ้า โดยเขียนความสัมพันธ์ได้ดังนี้



ตัวอย่าง


จงคำนวนหาค่าปริมาณกระแสไฟฟ้าของวงจรไฟฟ้าที่มีแรงดันไฟฟ้าขนาด 50 โวลต์ และมีค่าความต้านทานของวงจรเท่ากับ 5 โอห์ม


วิธีทำ

กำลังไฟฟ้า


กำลังไฟฟ้า Electrical Power เป็นกำลังไฟฟ้าที่ใช้ไปในการทำให้เกิดพลังงานในรูปต่างๆ เช่น พลังงานความร้อน พลังงานแสงสว่าง พลังงานกล มีหน่วยเป็น วัตต์ Watt ใช้สัญลักษณ์เป็น " W " ตามชื่อของ James Watt ซึ่งกำลังไฟฟ้ามีสูตรการคำนวนดังนี้

ตัวอย่าง
จงคำนวนหากำลังไฟฟ้าของโหลดของวงจรไฟฟ้าที่มีแรงดัน 200 โวลต์ ตกคร่อมอยู่และมีกระแสไฟฟ้า 1.5 แอมแปร์ ไหลผ่านโหลด

วิธีทำ

การวัดกำลังไฟฟ้า


วัตต์มิเตอร์ Wattmeter เป็นเครื่องมือที่ใช้วัดกำลังไฟฟ้าของอุปกรณ์ไฟฟ้าหรือเครื่องใช้ไฟฟ้า โดยการวัดจะต้องต่อขั้วไฟให้ถูกต้อง ซึ่งเราจะอ่านค่าของกำลังไฟฟ้าได้โดยตรงจากวัตต์มิเตอร์

การวัดกำลังไฟฟ้าของเครื่องรับวิทยุ ต่อโดยให้ขั้วเสียบของช่องกระแสไฟฟ้าของเครื่องวัดวัตต์มิเตอร์ต่อในลักษณะที่ให้กระแสไฟฟ้าไหลผ่านเครื่องวัดวัตต์มิเตอร์ก่อนที่จะไหลไปยังเครื่องรับวิทยุ ในขณะที่ขั้วเสียบของเสียบของช่องแรงดันไฟฟ้าให้ต่อคร่อมแหล่งจ่ายไที่จ่ายแรงดันไฟฟ้าให้แก่เครื่องรับวิทยุ ดังนั้น วัตต์มิเตอร์จึงเป็นทั้งแอมมิเตอร์ และโวลต์มิเตอร์ในตัวเดียวกันและทำการแสดงผลคูณของ P = I x V ซึ่งเราสามารถอ่านค่ากำลังไฟฟ้าของเครื่องรับวิทยุได้โดยตรงจากมิเตอร์

กิโลวัตต์ - ชั่วโมง


การที่เราจะต้องจ่ายค่าไฟฟ้าทุกๆเดือนเป็นการแสดงค่าใช้จ่ายของพลังงานไฟฟ้าที่ถูกใช้ไปในแต่ละเดือนจะวัดในหน่วยที่เรียกว่า กิโลวัตต์ - ชั่วโมง ซึ่งจะมีค่าเท่ากับ 1000 วัตต์ ใน 1 ชั่วโมง และอุปกรณ์ที่วัดนี้มีชื่อเรียกว่า Kilowatt - Hour meter จึงสามารถนำค่าพลังงานที่วัดมาได้มาใช้ในการคำนวนเรียกเก็บค่าใช้จ่ายไฟฟ้าในแต่ละเดือน สามารถคำนวนหาค่าพลังงานที่ถูกใช้ไปได้จากสูตรดังต่อไปนี้

พลังงานที่ถูกใช้ไป = กำลังไฟฟ้า x เวลา

ตัวอย่าง
ถ้าหลอดไฟขนาด 100 วัตต์ ถูกเปิดไว้นาน 10 ชั่วโมง จงคำนวนหาค่าพลังงานไฟฟ้าที่ถูกใช้ไป

วิธีทำ


วันเสาร์ที่ 20 กันยายน พ.ศ. 2551

หม้อแปลงไฟฟ้า

หม้อแปลงไฟฟ้า
จากวิกิพีเดีย สารานุกรมเสรี
ไปที่:
ป้ายบอกทาง, ค้นหา


หม้อแปลง หรือหม้อแปลงไฟฟ้า เป็นอุปกรณ์ไฟฟ้า ที่ใช้ในการส่งผ่านพลังงานจากวงจรไฟฟ้าหนึ่งไปยังอีกวงจรโดยอาศัยหลักการของแม่เหล็กไฟฟ้า โดยปกติจะใช้เชื่อมโยงระหว่างระบบไฟฟ้าแรงสูง และไฟฟ้าแรงต่ำ หม้อแปลงเป็นอุปกรณ์หลักในระบบส่งกำลังไฟฟ้า
เนื้อหา[
ซ่อน]
1 หม้อแปลงไฟฟ้า
2 โครงสร้าง
3 ฉนวน (Insulator)
4 แกนเหล็ก (Core)
5 ขั้วต่อสายไฟ (Terminal)
6 แผ่นป้าย (Name Plate)
7 หลักการทำงาน
8 ข้อกำหนดทางไฟฟ้าสำหรับหม้อแปลงไฟฟ้า
9 ประเภทของหม้อแปลง
10 ชนิดของหม้อแปลงไฟฟ้า
11 การหาขั้วหม้อแปลงไฟฟ้า
//

[แก้] หม้อแปลงไฟฟ้า
เป็นอุปกรณ์ที่ใช้สำหรับแปลงพลังงานไฟฟ้ากระแสสลับจากวงจรหนึ่งไปยังอีกวงจรหนึ่งโดยวิธีทางวงจรแม่เหล็กซึ่งไม่มีจุดต่อไฟฟ้าถึงกันและไม่มีชิ้นส่วนทางกลเคลื่อนที่ โดยทั่วไปเราใช้หม้อแปลงไฟฟ้าเพื่อแปลงแรงเคลื่อนไฟฟ้าให้มีขนาดลดลงหรือเพิ่มขึ้นจากเดิมโดยมีความถี่ไฟฟ้าคงเดิม

[แก้] โครงสร้าง
หม้อแปลงแบ่งออกตามการใช้งานของระบบไฟฟ้ากำลังได้ 2 แบบคือ หม้อแปลงไฟฟ้าชนิด 1 เฟส และหม้อแปลงไฟฟ้าชนิด 3 เฟสแต่ละชนิดมีโครงสร้างสำคัญประกอบด้วย
ขดลวดตัวนำปฐมภูมิ (Primary Winding) ทำหน้าที่รับแรงเคลื่อนไฟฟ้า
ขดลวดทุติยภูมิ (Secondary Winding) ทำหน้าที่จ่ายแรงเคลื่อนไฟฟ้า
แผ่นแกนเหล็ก (Core) ทำหน้าที่เป็นทางเดินสนามแม่เหล็กไฟฟ้าและให้ขดลวดพันรอบแกนเหล็ก
ขั้วต่อสายไฟ (Terminal) ทำหน้าที่เป็นจุดต่อสายไฟกับขดลวด
แผ่นป้าย (Name Plate) ทำหน้าที่บอกรายละเอียดประจำตัวหม้อแปลง
อุปกรณ์ระบายความร้อน (Coolant) ทำหน้าที่ระบายความร้อนให้กับขดลวด เช่น อากาศ, พัดลม, น้ำมัน หรือใช้ทั้งพัดลมและน้ำมันช่วยระบายความร้อน เป็นต้น
โครง (Frame) หรือตัวถังของหม้อแปลง (Tank) ทำหน้าที่บรรจุขดลวด แกนเหล็กรวมทั้งการติดตั้งระบบระบายความร้อนให้กับหม้อแปลงขนาดใหญ่
สวิตช์และอุปกรณ์ควบคุม (Switch Controller) ทำหน้าที่ควบคุมการเปลี่ยนขนาดของแรงเคลื่อนไฟฟ้า และมีอุปกรณ์ป้องกันไฟฟ้าชนิดต่าง ๆ รวมอยู่ด้วย
วัสดุที่ใช้ทำขดลวดหม้อแปลงโดยทั่วไปทำมาจากสายทองแดงเคลือบน้ำยาฉนวน มีขนาดและลักษณะลวดเป็นทรงกลมหรือแบนขึ้นอยู่กับขนาดของหม้อแปลง ลวดเส้นโตจะมีความสามารถในการจ่ายกระแสได้มากกว่าลวดเส้นเล็ก
หม้อแปลงขนาดใหญ่มักใช้ลวดถักแบบตีเกลียวเพื่อเพิ่มพื้นที่สายตัวนำให้มีทางเดินของกระแสไฟมากขึ้น สายตัวนำที่ใช้พันขดลวดบนแกนเหล็กทั้งขดลวดปฐมภูมิและขดลวดทุติยภูมิอาจมีแทปแยก (Tap) เพื่อแบ่งขนาดแรงเคลื่อนไฟฟ้า (ในหม้อแปลงขนาดใหญ่จะใช้การเปลี่ยนแทปด้วยสวิตช์อัตโนมัติ)

[แก้] ฉนวน (Insulator)
สายทองแดงจะต้องผ่านการเคลือบน้ำยาฉนวน เพื่อป้องกันไม่ให้ขดลวดลัดวงจรถึงกันได้ การพันขดลวดบนแกนเหล็กจึงควรมีกระดาษอาบน้ำยาฉนวนคั่นระหว่างชั้นของขดลวดและคั่นแยกระหว่างขดลวดปฐมภูมิกับทุติยภูมิด้วย ในหม้อแปลงขนาดใหญ่มักใช้กระดาษอาบน้ำยาฉนวนพันรอบสายตัวนำก่อนพันเป็นขดลวดลงบนแกนเหล็ก นอกจากนี้ยังใช้น้ำมันชนิดที่เป็นฉนวนและระบายความร้อนให้กับขดลวดอีกด้วย

[แก้] แกนเหล็ก (Core)
แผ่นเหล็กที่ใช้ทำหม้อแปลงจะมีส่วนผสมของสารกึ่งตัวนำ-ซิลิกอนเพื่อรักษาความหนาแน่นของเส้นแรงแม่เหล็กที่เกิดขึ้นรอบขดลวดไว้ แผ่นเหล็กแต่ละชั้นเป็นแผ่นเหล็กบางเรียงต่อกันหลายชิ้นทำให้มีความต้านทานสูงและช่วยลดการสูญเสียบนแกนเหล็กที่ส่งผลให้เกิดความร้อนหรือที่เรียกว่ากระแสไหลวนบนแกนเหล็กโดยทำแผ่นเหล็กให้เป็นแผ่นบางหลายแผ่นเรียงซ้อนประกอบขึ้นเป็นแกนเหล็กของหม้อแปลง ซึ่งมีด้วยกันหลายรูปแบบเช่น แผ่นเหล็กแบบ Core และแบบ Shell

[แก้] ขั้วต่อสายไฟ (Terminal)
โดยทั่วไปหม้อแปลงขนาดเล็กจะใช้ขั้วต่อไฟฟ้าต่อเข้าระหว่างปลายขดลวดกับสายไฟฟ้าภายนอก และ ถ้าเป็นหม้อแปลงขนาดใหญ่จะใช้แผ่นทองแดง (Bus Bar) และบุชชิ่งกระเบื้องเคลือบ (Ceramic) ต่อเข้าระหว่างปลายขดลวดกับสายไฟฟ้าภายนอก

[แก้] แผ่นป้าย (Name Plate)
แผ่นป้ายจะติดไว้ที่ตัวถังของหม้อแปลงเพื่อแสดงรายละเอียดประจำตัวหม้อแปลง อาจเริ่มจากชื่อบริษัทผู้ผลิต ชนิด รุ่นและขนาดของหม้อแปลง ขนาดกำลังไฟฟ้า แรงเคลื่อนไฟฟ้าด้านรับไฟฟ้าและด้านจ่ายไฟฟ้า ความถี่ใช้งาน วงจรขดลวด ลักษณะการต่อใช้งาน ข้อควรระวัง อุณหภูมิ มาตรฐานการทดสอบ และอื่น ๆ

[แก้] หลักการทำงาน
กฎของฟาราเดย์ (Faraday’s Law) กล่าวไว้ว่า เมื่อขดลวดได้รับแรงเคลื่อนไฟฟ้ากระแสสลับ จะทำให้ขดลวดมีการเปลี่ยนแปลงเส้นแรงแม่เหล็กตามขนาดของรูปคลื่นไฟฟ้ากระแสสลับ และทำให้มีแรงเคลื่อนไฟฟ้าเหนี่ยวนำเกิดขึ้นที่ขดลวดนี้
คำอธิบาย : เมื่อขดลวดปฐมภูมิได้รับแรงเคลื่อนไฟฟ้ากระแสสลับ จะทำให้มีแรงเคลื่อนไฟฟ้าเหนี่ยวนำเกิดขึ้นตามกฎของฟาราเดย์ ขนาดของแรงเคลื่อนไฟฟ้าเหนี่ยวนำนี้ขึ้นอยู่กับ จำนวนรอบของขดลวด พื้นที่แกนเหล็ก และความหนาแน่นของเส้นแรงแม่เหล็กที่มีการเปลี่ยนแปลงจากไฟฟ้ากระแสสลับ เมื่อกระแสไฟฟ้าไหลผ่านขดลวดจะทำให้มีเส้นแรงแม่เหล็กในขดลวด เส้นแรงแม่เหล็กนี้เปลี่ยนแปลงตามขนาดของรูปคลื่นไฟฟ้าที่ได้รับ เส้นแรงแม่เหล็กเกือบทั้งหมดจะอยู่รอบแกนเหล็ก เมื่อมีการเปลี่ยนแปลงของเส้นแรงแม่เหล็กผ่านขดลวด จะทำให้มีแรงเคลื่อนไฟฟ้าเหนี่ยวนำเกิดขึ้นที่ขดลวดทุติยภูมินี้

[แก้] ข้อกำหนดทางไฟฟ้าสำหรับหม้อแปลงไฟฟ้า
1.ไม่เปลี่ยนแปลงความถี่ไปจากเดิม
2.กำลังไฟฟ้าของหม้อแปลงด้านปฐมภูมิเท่ากับด้านทุติยภูมิ เช่น หม้อแปลงขนาด 100 VA, 20 V / 5 V จะมีแรงเคลื่อนไฟฟ้าด้านปฐมภูมิ 20 V ส่วนด้านทุติยภูมิจะมีแรงเคลื่อนไฟฟ้า 5 V

[แก้] ประเภทของหม้อแปลง
หม้อแปลงอาจแบ่งได้หลายวิธี เช่น แบ่งตามพิกัดกำลัง ระดับ
แรงดันไฟฟ้า หรือ จุดประสงค์การใช้งาน
สำหรับใน
ประเทศไทย อาจจะแบ่งหยาบๆ ได้ดังนี้หม้อแปลงกำลัง (Power Transformer) เป็นหม้อแปลงที่ใช้ในการส่งผ่านพลังงานในระบบส่งกำลังไฟฟ้า โดยทั่วไปจะมีขนาดตั้งแต่ 1 MVA ขึ้นไปจนถึงหลายร้อย MVAหม้อแปลงจำหน่าย (Distribution Transformer) เป็นหม้อแปลงที่ใช้ในระบบจำหน่ายของ การไฟฟ้าส่วนภูมิภาค และการไฟฟ้านครหลวงหม้อแปลงวัด(Instrument Transformer) เป็นหม้อแปลงที่มิได้ใช้เพื่อการส่งผ่านพลังงาน แต่ใช้เพื่อแปลงกระแสไฟฟ้า หรือแรงดันไฟฟ้า จากระบบแรงดันสูงให้มีขนาดที่เหมาะสมกับเครื่องมือวัดค่าต่างๆ เช่น มิเตอร์

[แก้] ชนิดของหม้อแปลงไฟฟ้า
การจำแนกหม้อแปลงตามขนาดกำลังไฟฟ้ามีดังนี้
1.ขนาดเล็กจนถึง 1 VA เป็นหม้อแปลงที่ใช้กับการเชื่อมต่อระหว่างสัญญาณในงานอิเล็กทรอนิกส์
2.ขนาด 1-1000 VA เป็นหม้อแปลงที่ใช้กับงานด้านเครื่องใช้ไฟฟ้าภายในบ้านขนาดเล็ก
3.ขนาด 1 kVA -1 MVA เป็นหม้อแปลงที่ใช้กับงานจำหน่ายไฟฟ้าในโรงงาน สำนักงาน ที่พักอาศัย
4.ขนาดใหญ่ตั้งแต่ 1 MVA ขึ้นไป เป็นหม้อแปลงที่ใช้กับงานระบบไฟฟ้ากำลัง ในสถานีไฟฟ้าย่อย การผลิตและจ่ายไฟฟ้า
นอกจากนี้หม้อแปลงยังสามารถจำแนกชนิดตามจำนวนรอบของขดลวดได้ดังนี้
5.หม้อแปลงแรงเคลื่อนไฟฟ้าเพิ่ม (Step-Up) ขดลวดทุติยภูมิจะมีจำนวนรอบมากกว่าขดลวดปฐมภูมิ
6.หม้อแปลงแรงเคลื่อนไฟฟ้าลง (Step-Down) ขดลวดทุติยภูมิจะมีจำนวนรอบน้อยกว่าปฐมภูมิ
7.หม้อแปลงที่มีแทปแยก (Tap) ทำให้มีขนาดของแรงเคลื่อนไฟฟ้าได้หลายระดับ
8.หม้อแปลงที่ใช้สำหรับแยกวงจรไฟฟ้าออกจากกัน(Isolating)ขดลวดทุติยภูมิจะมีจำนวนรอบเท่ากันกับขดลวดปฐมภูมิหรือมีแรงเคลื่อนไฟฟ้า เท่ากันทั้งสองด้าน
9.หม้อแปลงแบบปรับเลื่อนค่าได้ (Variable) ขดลวดทุติยภูมิและปฐมภูมิจะเป็นขดลวดขดเดียวกัน หรือเรียกว่าหม้อแปลงออโต ้(Autotransformer)ดูรูปที่15(ก)มักใช้กับการปรับขนาดแรงเคลื่อนไฟฟ้าให้กับวงจรไฟฟ้าตามต้องการ และสำหรับวาไรแอค(Variac)นั้นเป็นชื่อเรียกทางการค้าของหม้อแปลงออโต้ที่สามารถปรับค่าได้ด้วยการเลื่อนแทปขดลวด
10. หม้อแปลงกระแส(CurrentTransformer:CT)ถูกออกแบบมาให้ใช้งานร่วมกับเครื่องวัดกระแสไฟฟ้าหรืออุปกรณ์ไฟฟ้าบางอย่างที่ต้องต่อร่วมกันในวงจร เดียวกันแต่ต้องการกระแสไฟต่ำหม้อแปลงกระแสจะทำหน้าที่แปลงขนาดกระแสลงตามอัตราส่วนระหว่างปฐมภูมิต่อทุติยภูมิเช่น 300 : 5 หรือ 100 : 5 เป็นต้น สำหรับหม้อแปลงกระแส 300 : 5 หมายถึงหม้อแปลงจะจ่ายกระแสทุติยภูมิ 5 A หากได้รับกระแสปฐมภูมิ 300 A หม้อแปลงกระแสจะต้องมีโหลดต่อไว้กับ ทุติยภูมิเพื่อป้องกันทุติยภูมิเกิดแรงเคลื่อนไฟฟ้าสูงในขณะที่ปฐมภูมิมีกระแสไฟฟ้าผ่าน และถ้าหม้อแปลงกระแสไม่ได้ใช้งาน ควรใช้สายไฟลัดวงจรหรือ ต่อวงจรไว้กับขั้วทุติยภูมิด้วย

[แก้] การหาขั้วหม้อแปลงไฟฟ้า
ขั้วของหม้อแปลงมีความสำคัญเพื่อจะนำหม้อแปลงมาต่อใช้งานได้อย่างถูกต้อง การหาขั้วหม้อแปลงมีหลักการทดสอบโดยการต่อขดลวดปฐมภูมิและทุติยภูมิอนุกรมกันซึ่งจะทำให้เกิดแรงเคลื่อนไฟฟ้าขั้วเสริมกัน (Additive Polarity) หรือขั้วหักล้างกัน (Subtractive Polarity) ถ้าขั้วเสริมกันเครื่องวัดจะอ่านค่าได้มากกว่าแรงเคลื่อนไฟฟ้าที่จ่ายให้กับหม้อแปลง แต่ถ้าขั้วหักล้างกันเครื่องวัดจะอ่านค่าได้น้อยกว่าแรงเคลื่อนไฟฟ้าที่จ่ายให้กับหม้อแปลง
การหาขั้วหม้อแปลงมีความสัมพันธ์ระหว่างขั้วแรงเคลื่อนไฟฟ้าด้านสูงและแรงเคลื่อนไฟฟ้าด้านต่ำ เมื่อเราจ่ายแรงเคลื่อนไฟฟ้าให้กับขั้ว H1 และ H2 ส่วนขดลวดที่เหลือคือขั้ว X1 และ X2 สิ่งที่ควรรู้ในการทดสอบคือ อัตราส่วนของแรงเคลื่อนไฟฟ้าระหว่างปฐมภูมิกับทุติยภูมิและเพื่อความปลอดภัยไม่ควรจ่ายแรงเคลื่อนไฟฟ้าทดสอบเกินกว่าขนาดของขดลวดแรงเคลื่อนไฟต่ำ ตัวอย่างเช่น หม้อแปลง 480 / 120จะมีอัตราส่วนของแรงเคลื่อนไฟฟ้าระหว่างปฐมภูมิกับทุติยภูมิเท่ากับ4ดังนั้นหากจ่ายแรงเคลื่อนไฟฟ้า120Vให้กับขดลวดปฐมภูมิจะทำให้มีแรงเคลื่อนไฟฟ้าด้านทุติยภูมิ 120 / 4 เท่ากับ 30 V ซึ่งจะไม่ทำให้มีแรงเคลื่อนไฟสูงเกิดขึ้นในระหว่างการทดสอบ
ดึงข้อมูลจาก "
http://th.wikipedia.org/wiki/%E0%B8%AB%E0%B8%A1%E0%B9%89%E0%B8%AD%E0%B9%81%E0%B8%9B%E0%B8%A5%E0%B8%87%E0%B9%84%E0%B8%9F%E0%B8%9F%E0%B9%89%E0%B8%B2".